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Abstract
Payments for Ecosystem Services (PES) are a widely used approach for forest con-

servation through which people are paid to avoid deforesting land they enroll in the
program. We present findings from a randomized trial in Mexico that tested whether
a PES contract that requires enrollees to enroll all of their forest is more effective than
the traditional PES contract that allows them to exercise choice. The modification’s
aim is to prevent landowners from enrolling only parcels they planned to conserve
anyway while leaving aside other parcels to deforest. We find that the full-enrollment
treatment reduces deforestation by 41% compared to the traditional contract. This
extra conservation occurs despite the full-enrollment provision reducing the com-
pliance rate due to its more stringent requirements. The full-enrollment treatment
more than quadrupled cost-effectiveness, highlighting the potential to substantially
improve the efficacy of conservation payments through simple contract modifica-
tions.
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1 Introduction

Human-driven tropical deforestation is a significant contributor to greenhouse gas emis-

sions (Seymour and Busch, 2016) and biodiversity loss (Giam, 2017; Hansen et al., 2013;

Gibson et al., 2011; Pendrill et al., 2022). Tropical deforestation often occurs in high-

poverty areas with limited government capacity to enforce bans. Consequently, Pay-

ments for Ecosystem Services (PES) programs have emerged as a promising policy to

achieve forest conservation without exacerbating poverty (Wunder et al., 2018; Jayachan-

dran, 2023). PES programs offer cash or in-kind incentives to participating landowners

or communities, with payments conditional on specific natural resources management

activities, such as forest protection (Wunder, 2005; Engel, Pagiola and Wunder, 2008). A

recent review recorded 550 active PES programs globally with around US$40 billion in

annual transactions (Salzman et al., 2018).

Whether and in what contexts PES programs are effective in achieving desired out-

comes has received considerable scholarly attention (Wunder, 2013; Börner et al., 2017;

Wunder et al., 2018). Much less work has tested how contract design affects program

outcomes. The importance of program design has been discussed conceptually (Börner

et al., 2017; Wells et al., 2020; Engel et al., 2016) and empirically (Izquierdo-Tort et al.,

2021; Wunder et al., 2018), and prior studies have used lab-in-the-field or framed field

experiments to examine the effects of PES design on outcomes such as participation

(Rudolf, Edison and Wollni, 2022), equity perceptions (Cook, Grillos and Andersson,

2023), and collective action (Kaczan et al., 2017; Midler et al., 2015). While random-

ized controlled trials (RCTs) that assess environmental outcomes of actual PES schemes

have emerged in recent years, these have mostly evaluated program effects against a no-

program scenario (Wilebore et al., 2019; Adjognon, Van Soest and Guthoff, 2021; Wiik

et al., 2019; Grillos et al., 2019; Pynegar et al., 2018; Jayachandran et al., 2017; Martin
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et al., 2014), as opposed to isolating the effects of design variations. One exception is a

study of PES to reduce agricultural burning in India that experimentally varied payment

levels, conditionality, and upfront versus ex-post payments (Jack et al., 2022).

We test a design variation aimed at reducing inframarginal payments in PES for

forest protection. PES effectiveness depends crucially on the extent to which payments

are inframarginal, or made for protecting forest that would have been protected even

without the financial incentive (Wunder, 2005). We focus on an important source of

inframarginality: participants’ strategic selection of which land to enroll (Izquierdo-Tort,

Ortiz-Rosas and Vázquez-Cisneros, 2019). If eligible landowners systematically enroll

the subset of their lands that they were unlikely to deforest, many of the payments will

be for conservation that would have happened anyway.

Reducing inframarginal payments is especially important because the policy objective

for PES is not just effectiveness but cost-effectiveness, e.g., additional forest cover per

dollar of program expenditures. Inframarginal payments add to program costs without

generating benefits so depress cost-effectiveness. Improving cost-effectiveness is critical

given under-funding of conservation initiatives (Cosma, Rimo and Cosma, 2023) and a

recent trend of PES program downsizing or discontinuation in some contexts (Hayes

et al., 2022; Rode, 2022; Etchart et al., 2020), including Mexico, our study’s setting.

In this paper, we conduct the first randomized trial to test the impacts of requiring

PES participants to enroll all of their eligible forest landholdings (’full-enrollment’). The

primary outcome is avoided deforestation, measured using satellite imagery. The study

takes place in Selva Lacandona, Chiapas, Mexico.

We compare the full-enrollment “treatment” group to a “control” group offered a

PES contract that gives participants the flexibility to enroll some lands for conservation

while leaving other lands outside the program (‘standard PES’ or ‘partial enrollment’).

Since payments are conditional on maintaining only the enrolled parcels, under standard
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PES, participants can be in compliance yet continue their business-as-usual deforestation

by clearing non-enrolled lands. The partial enrollment provision is used in Mexico’s

national Pago Por Servicios Ambientales (PSA) program and other major PES programs

worldwide such as the Conservation Reserve Program in the US (Chang and Boisvert,

2009). Our standard contract closely follows PSA, but with a one-year rather than five-

year duration.

To see why full-enrollment might be a valuable modification, suppose the owner of

20 forest hectares wants to clear 4 hectares during the contract period. With a standard

PES scheme, she can enroll the other 16 hectares, keep them intact, deforest the left-out

4 hectares, and receive payment, despite not having reduced her deforestation at all.

She is paid for 16 hectares of conservation, but the payments are entirely inframarginal.

In contrast, a full-enrollment scheme offers her the choice of not participating or en-

rolling all 20 hectares she owns. Now she cannot receive payment without reducing

her deforestation. If she complies, she will generate more additional forest cover under

full-enrollment (4 hectares versus 0 hectares). However, another implication is that, due

to the more demanding contract terms, full-enrollment reduces the likelihood that she

chooses to comply. Combining these two predicted effects, the net effect on forest cover

is ambiguous, though full-enrollment should outperform standard PES on forest cover

per dollar spent, or cost-effectiveness. We test all of these predictions.

We found that full-enrollment led to 5.7 percentage points less annual deforestation

than the control group, or 41% less deforestation. As predicted, the extra conservation

is on parcels that individuals were not planning to enroll if given the choice. Drawing

on prior estimates of the effectiveness of standard PES in our study context (Costedoat

et al., 2015), we calculate that our contract modification more than quadrupled the cost-

effectiveness of PES. Many PES programs worldwide give participants the latitude to

choose which parcels to enroll, so the modification we introduce has wide applicability.
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Our study is the first to empirically compare full-enrollment against standard, partial-

enrollment PES. We build on a previous study that evaluated the impact of full-enrollment

PES in Uganda relative to a no-PES control group (Jayachandran et al., 2017). That study

found less inframarginality and more cost-effectiveness than is typical for PES. Based on

that result, we hypothesized that requiring full-enrollment among PES participants in

Mexico would increase cost-effectiveness and likely the amount of forest preserved.

2 Conceptual Framework

The predictions about the effects of full-enrollment can be seen more formally through

a stylized model. Consider a landowner i that owns a one-dimensional continuum of

forest parcels, (OL) in Figure 1. The parcels are ordered along the horizontal axis based

on the net benefits of deforesting them, with higher net benefits on the right. Each parcel

j would produce a private benefit bj if deforested, the red line passing through A, B and

C. For simplicity, we assume the cost of deforesting each parcel is identical and equal to

d. The blue line passing through F, A and E is the cost to deforest each parcel.

Scenario without PES

Without a PES program, the landowner would deforest all grids with bj > d. That is,

the landowner would deforest the parcels in the line segment NL in Figure 1. The net

benefits to her from this deforestation are represented by the triangle ACE. For the

segment ON, it is in her private interests to conserve this land, even without PES.

Standard PES scenario

Assume now there is a PES program that pays p per enrolled grid. With a traditional PES

program that allows the landowner to choose which grids to enroll, the farmer would
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Figure 1: Theoretical avoided deforestation with modified contract
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Notes: Theoretical representation of the standard PES program and the modified full-enrollment PES
assessed in this study. The red line passing through A, B and C represents the benefits of deforesting each
parcel. The blue line passing through F, A and E represents the private costs of deforesting the parcel.
Consequently, without PES the farmer would deforest NL. With standard PES that pays p, the landowner
enrolls OM and deforests the segment ML. With the modified PES, she will need to enroll and preserve
ML to be in compliance. She will choose to comply if the rectangle of total PES payments (DEFG) is larger
than the area of net benefits of deforestation (ACE) she would enjoy without PES.

enroll all grids with bi < p + d. These are the parcels on the segment OM. The avoided

deforestation is (NM), and she is also receiving inframarginal payments for parcels (ON)

she would not have deforested anyway.

As long as there is some parcel where bj < d+ p and a landowner can partially enroll

land, in this simple model, she will choose to enroll and comply with PES. There will

be additionality as long as there exist some parcels where d < bj < d + p, which in our

example, is the segment NM.
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Full-enrollment PES scenario

Consider now the modified program where the farmer has to enroll all her forest land

(OL). That would require the farmer not deforesting the grids ML that she would not

have chosen to enroll under the standard contract. The avoided deforestation is (NL).

She is also receiving inframarginal payments for the land she would not have deforested

anyway (ON). A first prediction is that avoided deforestation is higher for someone who

complies with full-enrollment PES than with standard PES. A second prediction is that

this extra avoided deforestation is on the parcels that the landowner would exclude from

the PES program if given the choice.

A third prediction is that the likelihood of taking up and complying with the PES

program is weakly lower under full enrollment. As explained above, with our assump-

tions, everyone complies with standard PES. With full-enrollment PES, the landowner

will comply if the rectangle of total PES payments (DEFG) is larger than the area of net

benefits of deforestation (ACE) without PES. This condition may or may not hold. To see

this, note that as p → 0, the area of DEFG becomes 0, and when p is high enough that

the line GBD intersects or is above the point C then the triangle ACE that represents the

net benefits of deforesting is a strict subset of the payments rectangle DEFG.

3 Study Context

Mexico has one of the oldest and largest government-funded PES programs worldwide,

in terms of both area enrolled and public spending (Shapiro-Garza, 2020). Since 2003, it

has been implemented nationally by the national forest commission (Conafor) and has

focused on preventing land cover change, particularly deforestation, in critical ecosys-

tems (Sims and Alix-Garcia, 2017; Muñoz-Piña et al., 2008). Mexico’s PES (or PSA in

Spanish) provided annual payments of MX$1,000 (approximately US$50) per hectare
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in the study area in 2021. The conditions for payment are maintaining forest cover

and performing forest management activities on enrolled lands. Program compliance

is monitored through periodic field visits and remote sensing. Most applications are

made at the ejido (community) level, bundling individual and sometimes collectively-

managed landholdings (Izquierdo-Tort et al., 2021).1 Local implementation is facilitated

by Conafor-appointed intermediaries who help communities prepare applications and

oversee program activities. Our implementing partner, the non-profit Natura Mexicana,

is a Conafor intermediary.

Many but not all studies find that PSA has been effective at reducing deforestation

(Sims and Alix-Garcia, 2017; Alix-Garcia, Sims and Yañez-Pagans, 2015; Costedoat et al.,

2015; Charoud et al., 2023). However, PSA’s funding has declined. From 2015-2019,

Conafor’s annual budget was cut by 70% in real terms (Provencio and Carabias, 2019).

Although demand for PSA has exceeded available funding since the program’s outset

(Muñoz-Piña et al., 2008), the shrinking budget has recently made access considerably

harder for interested communities (Izquierdo-Tort et al., 2021).

We study five ejidos in Marqués de Comillas (MdC) municipality in Chiapas state

(see Figure 2). MdC is an agricultural frontier region within Selva Lacandona, which is

the largest high-canopy tropical rainforest remnant in Mexico and a biodiversity hotspot

(Carabias, De la Maza and Cadena, 2015), but also a region of high deforestation for cattle

ranching and agricultural production (Fernández-Montes de Oca, Gallardo-Cruz and

Martı́nez, 2015). Landholders in MdC manage individual endowments of 30-50 hectares,

which they allocate to a combination of pastures, agricultural fields, and forest reserves.

Many households face economic poverty (Izquierdo-Tort, 2020). The five communities

have previously participated in several PSA contracts since the late 2000s.

1An ejido is a legally recognized communal land governance entity that comprises plots that are indi-
vidually managed by landholders and common-resource areas that are managed collectively.
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Figure 2: Map of study location

Notes: The top panel depicts the municipality of Marques de Comillas (MdC), with the five ejidos in the
study shaded in green. The shading in the bottom panel indicates the location of MdC within Chiapas
and the location of Chiapas within Mexico.

Previous research in MdC finds that PSA has reduced deforestation on enrolled lands

(Costedoat et al., 2015; Charoud et al., 2023) and yielded socio-economic co-benefits

(Izquierdo-Tort, 2020; Izquierdo-Tort et al., 2022). However, prior research finds that

most landholders enroll only a fraction of their eligible property, and deforestation rates
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are high on non-enrolled lands, which participants consider more productive for ranch-

ing and agriculture (Izquierdo-Tort, Ortiz-Rosas and Vázquez-Cisneros, 2019).

4 Data and Empirical Strategy

4.1 Sample selection

We recruited landholders from the five ejidos Marqués de Comillas, Chiapas who had

applied to PSA in 2021 with individual landholdings but were rejected due to Conafor

having insufficient funding.2 Of the 118 landholders who met this criterion, We at-

tempted to enroll 96 of them, excluding those who had requested to enroll more than

90 hectares (for project budget reasons). We successfully enrolled 64 of them. We were

unable to contact 13 of them, and 19 chose not to participate (reasons included having

alternative land use plans and not wanting to have landholdings measured or answer

survey questions).

4.2 Data collection

Study participants completed a baseline survey in May-June 2021. As part of the base-

line, enumerators walked around the participants’ plots to record the exact polygons for

the deforestation analysis using GPS software on smartphones.

We conducted an endline survey in August 2022 and successfully resurveyed 58 of

the 64 study participants, though the response rate was lower on several questions, such

as income. We use the baseline data to ensure the study arms are balanced, and we

2They met all requirements for participation but did not score high enough in Conafor’s ranking
system. Although Conafor does not disclose the ranking evaluations, Natura Mexicana staff attribute
the rejections to the lands not being within a federal natural protected area and the communities having
participated in PSA during the five preceding years and lacking forestry certification, all of which lower
priority.
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use the endline survey for supplementary analysis of impacts on satisfaction with the

modified PES program.

We measure deforestation using the participants polygons, satellite data and a ma-

chine learning algorithm. Specifically, we Planet-NICFI data, which provide monthly

cloud-free images with a resolution of 4.59m by 4.56 m. We train a random forest al-

gorithm to classify each pixel as forest-covered or not, using hand-classified images as

training data. See the appendix for details.

4.3 Description of PES contracts and random assignment

In June-July 2021, Natura Mexicana held meetings in each community and offered each

study participant one of two PES contracts: (a) a contract to enroll the same forested

lands that she had previously submitted to PSA in 2021 (standard PES, or control group)

or (b) a contract that required her to enroll all of her forested lands (full enrollment,

or treatment group). We determined participants’ contract type based on a random

number generator in Stata, with the randomization stratified by ejido. There is no “pure

control” group that was not offered PES; the study is designed to measure the relative

performance of full enrollment, compared to standard PES.

To determine the enrolled area for the control group, we use the shapefiles that ejidos

submitted with their 2021 PSA application indicating the forest parcels they wanted to

enroll. We also have this information for the treatment group, so we know the parcels

they would have enrolled had they been offered standard PES. Similarly, because we

mapped all of the forest owned by a landholder, we have the polygons for forest area

left out of the PES contract for the control group. Thus, we can compare the treatment

and control groups’ deforestation rate overall for their forest and also separately for the

parcels they would have included versus excluded if given the partial-enrollment option.

On average, landowners left out 49% of their forest area from their PSA application.
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At the community meeting, participants chose whether to enroll (sign the contract);

the contract took effect immediately. The control and treatment contracts were identi-

cal except for the land enrollment requirement. The payment rate was set at the level

used by PSA, MX$1,000 per year per hectare of forest. Payment disbursal at the end

of the one-year contract was conditional on maintaining forest cover on all of the en-

rolled land, which was determined based on satellite imagery and, if needed, in-person

verification. Our monitoring and sanctioning of non-compliance differs from Conafor’s

methods in PSA in two key ways: i) our contracts are signed at the individual as op-

posed to the community-level, which facilitates enforcement; ii) participants on whose

land non-compliance was detected receive zero payment, as opposed to Conafor’s more

lenient approaches where non-compliant participants can still receive partial payments

(Izquierdo-Tort, Ortiz-Rosas and Vázquez-Cisneros, 2019). For the satellite verification,

we developed a random-forest model to analyze high-resolution Planet imagery, clas-

sifying pixels as forested or not. We use the same model to estimate the treatment

impacts reported in the next section. Our implementing partners, Natura Mexicana and

Innovations for Poverty Action, disbursed payment to those who complied. We then

administered an endline survey to study participants in August 2022.

4.4 Summary statistics

Table 1 presents summary statistics for the study sample. Each row presents the mean

and then the standard deviation in parentheses. Column 1 presents statistics for the

whole sample, column 2 for the treatment group (full enrollment) and column 3 for

the control group (partial enrollment). Column 4 reports the standardized difference

between the two groups (difference divided by the pooled standard deviation). 62% of

study participants are male, average education is 7 years, and average household expen-

ditures was MX$3,500 in the previous month (around US$175). 60% had been enrolled
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in Conafor’s PSA in the past. Study participants, on average, own 42 hectares of land of

which 19 are forest.

Table 1: Balance at baseline

Variable Total Treatment Control Standardized
diff

(1) (2) (3) (4)

Male 0.625
(0.488)

0.645
(0.486)

0.606
(0.496) 0.080

Years of school completed 7.127
(4.054)

6.710
(4.391)

7.531
(3.724) -0.203

Household expenditure in last month (Ln) 8.157
(0.751)

8.097
(0.797)

8.210
(0.715) -0.150

Has been or is enrolled in a PSA program 0.603
(0.493)

0.645
(0.486)

0.562
(0.504) 0.168

Land area across all plots (hectares) 42.019
(20.976)

46.932
(21.056)

37.404
(20.129) 0.454

Distance to road (minutes) 15.581
(14.559)

16.245
(15.499)

14.957
(13.830) 0.088

Previous def. % Conafor area 0.007
(0.019)

0.009
(0.022)

0.006
(0.016) 0.158

Previous def. % Non- Conafor area 0.232
(0.194)

0.186
(0.186)

0.279
(0.193) -0.479

Primary forest area total across all plots (hectares) 18.812
(14.093)

22.790
(15.658)

15.076
(11.464) 0.547

Number of observations 64 31 33

Notes: for each variable, each row presents the mean and below the standard deviation in parenthesis.
Column 1 for the whole sample, column 2 for the treatment group and column 3 for the control group.
Column 4 presents the standardized difference.

The only statistically significant difference between study arms is for previous-year

deforestation in the forest land that participants had not chosen for enrollment in their

2021 PSA application (i.e. non-Conafor areas). Our main results are robust to controlling

for this variable, as shown in Table A.1.
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4.5 Regression model

As treatment was randomized, we can estimate the effect of the program by comparing

outcomes in the treatment and control groups. We do this by estimating the regression

model shown in equation (1):

ypie = βTreatmenti + αe + εpie (1)

where ypie is the outcome (deforested) for a pixel p owned by individual i, residing

in ejido e. Treatmenti is a binary variable that equals 1 if individual i was offered the

full-enrollment contract. Finally, αe are ejido fixed effects, the stratification unit for the

treatment. When each observation is a pixel, we cluster standard errors at the indi-

vidual level, allowing for arbitrary non-independence of the error term εpie, within an

individual’s pixels.

We can also conduct the deforestation analysis at the individual level and study

heterogeneity by forest at baseline.

yie = β1Treatmenti + β2Treatmenti × Zi + β3Zi + αe + εie (2)

where yie is deforestation of individual i, belonging to ejido e. And Zi is a characteristic of

individual i, for example whether individual had a large area of forest at baseline (above

the median). εie is the error term. We allow for heteroskedasticity-robust standard errors.
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Table 2: Treatment effects on deforestation

Deforestation May 2021 - August 2022

Property area Conafor area Non-Conafor
area

(1) (2) (3)

Treat -0.057 -0.004 -0.135
(0.021)∗∗∗ (0.008) (0.036)∗∗∗

Control mean 0.142 0.019 0.288
N 779451 382350 397101

Notes: Each observation is a 4.59 m by 4.56 m pixel within the landholding of a study participant, that
was forest-covered at baseline. All regressions include ejido fixed effects. Robust standard errors are in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

5 Results

5.1 Treatment effect on deforestation

Table 2 reports the effects on deforestation of the full enrollment contract (treatment),

relative to standard PES. Specifically, we examine how much of the forest that existed at

baseline was deforested over the PES contract period. The outcome is a binary variable

that equals 1 if the pixel is non-forest at the end of the study period.3

We first analyze deforestation within each participant’s entire forest area, enrolled or

not (column 1). In the standard contract arm, 14% of the forest area was deforested over

the year. The treatment group deforests 5.7 percentage points (pp) less (p-value=0.01),

equivalent to 41% less deforestation. Figure A.1 presents this treatment effect in the

context of deforestation trends from 2017 to 2023. The treatment years of 2021 and 2022

are the only years when the deforestation rate is significantly lower in the treatment

group than control group.

Column 2 restricts the sample to forest pixels the individuals were planning to enroll

3The baseline month is May 2021 (because the first contracts started in June 2021), and the endline
month is August 2022 (because the last contracts ended in July 2022).
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in Conafor’s PSA (“Conafor area”). This area is covered by our PES contract for both

treatment and control groups. The number of observations (pixels) in column 2 is 49% of

the observations in column 1, indicating the proportion of their forest that landowners

enrolled when given choice. For this land, the deforestation rate is relatively low (1.9%)

in the control group and nearly identical in the treatment group.

We next examine the forest that the participant had not wanted to enroll in PSA

(column 3).4 The control group was in compliance with their contract regardless of

what they did on these parcels, while the treatment group had to conserve them to be in

compliance. Deforestation is very high in the control group for these parcels, at 28.8%. In

the treatment group, the deforestation rate is 13.5 pp lower (p-value=0.000), equivalent

to 47% less deforestation on these parcels.

As an alternative analysis, Table 3 presents the results at the individual level instead

of pixel level. Odd columns present average treatment effects, while even columns study

heterogeneity by the amount of forest at baseline. Column 1 shows that, weighting

each landowner equally, there is no significant difference in deforestation between the

contracts. This pattern can be reconciled with the result in Table 2 if the treatment

reduced deforestation more for owners of large amounts of forest. Column 2 shows that

this heterogeneity indeed is present. The treatment reduces deforestation among those

who own above-median forest (by 8.2 pp on net, p-value=0.005), but not among those

with below-median forest. Columns 3 to 6 show results for the Conafor and non-Conafor

parcels, and, as expected, the improved performance of the treatment contract is because

of lower deforestation in the non-Conafor area.
4Five people included all of their forest in their 2021 PSA application so have no non-Conafor area.
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Table 3: Treatment effects at the individual level, including heterogeneity by baseline
forest area

Deforestation May 2021 - August 2022

Property area Conafor area Non-Conafor area

(1) (2) (3) (4) (5) (6)

Treat -0.039 0.011 -0.007 -0.009 -0.126 -0.091
(0.025) (0.039) (0.018) (0.026) (0.041)∗∗∗ (0.070)

Treat × Above-median forest area at baseline -0.093 0.013 -0.063
(0.050)∗ (0.029) (0.081)

Above-median forest area at baseline 0.023 -0.030 -0.001
(0.043) (0.035) (0.062)

Control mean 0.138 0.138 0.031 0.031 0.311 0.311
p-val: Treat + Treat × Above-median forest

area at baseline = 0
.005 0.767 0.001

N 64 64 64 64 59 59

Notes: Each observation is a landowner. All regressions include ejido fixed effects. Robust standard errors
are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

5.2 Treatment effect on compliance

In the control group, 30 out of 33 individuals (91%) complied. In the treatment group,

22 out of 31 (71%) complied.5 The lower compliance rate in the treatment group (p-

value=0.04) is consistent with the stricter requirements of the full-enrollment contract.

Despite the lower compliance rate, the treatment reduced total deforestation because it

led to much higher averted deforestation per person who complied.

5.3 Cost-effectiveness

Our finding that the treatment reduced deforestation by 5.7% of total forest area relative

to standard PES (Table 2, column 1), is one input into a cost-effectiveness calculation. We

also need the absolute amount of avoided deforestation under each contract type. For

this, we need to make an assumption about how much averted deforestation was caused

5One landowner in each arm chose not to enroll in the PES program. The other non-compliers enrolled
but deforested some of their enrolled land.
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by standard PES relative to a scenario with no PES. Based on the previous literature,

we assume standard PES led to 2.2% less deforestation per year on enrolled land, which

implies 1.1% less deforestation on total land Costedoat et al. (2015). This assumes no

impacts on non-enrolled land, which is a generous assumption for standard PES: defor-

estation might have shifted from enrolled to non-enrolled land. This assumption choice

yields a conservative estimate of the gains in cost-effectiveness from our treatment.

Full-enrollment PES therefore prevented 6.8% of forest area being lost relative to

no PES (1.1% + 5.7%). This implies 65.8 hectares of avoided deforestation with full-

enrollment PES and 7.3 hectares with standard PES.

The treatment increased hectares of forest enrolled and payments. In the standard

PES group, we paid in total MX$313,400 and in the treatment group, MX$591,000. This

implies MX$42,932 (US$2143) per hectare of avoided deforestation for standard PES ver-

sus MX$8,982 (US$448.29) for full-enrollment PES.6 Thus, our treatment increased PES

cost-effectiveness by a factor of 4.8.

To quantify the carbon benefits of full-enrollment PES, we use prior estimates that

the Lacandona forest stores 550 metric tons of CO2 per hectare Saatchi et al. (2011). The

environmental benefits of a short-term PES program derive from delaying deforestation.

We assume that after the contract period ends, landowners revert to their business-

as-usual deforestation: they do not continue with their higher conservation rate, but

they also do not deforest at a higher catch-up rate Jayachandran et al. (2017). Using

a 3% discount rate, we can express the delayed emissions in terms of the equivalent

permanently avoided emissions. This calculation yields that full-enrollment PES’s cost

is US$4.76 per metric ton of permanently averted CO2.

6We use the mid-July 2021 exchange rate of MX$20.036 = US$1. Administrative costs are low relative
to payments; they reduce the relative cost-effectiveness of the treatment because they are also incurred for
non-compliers.
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6 Conclusions

Because tropical deforestation rates are high – contributing to climate change and biodi-

versity loss – while conservation funding is limited, there is a pressing need for design

improvements in conservation policies (Wunder et al., 2018). Our findings from a proof-

of-concept PES experiment in Mexico suggest that simple contract design changes can

enhance the cost-effectiveness of conservation payments.

We found that introducing a requirement for PES participants to enroll all their forest

led to 5.7 percentage points less annual deforestation than what is achieved with a stan-

dard PES contract that allows for strategic land selection, or 41% less deforestation. As

predicted, the extra conservation is on parcels that individuals were not planning to en-

roll if given the choice. Drawing on prior estimates of the effectiveness of standard PES

in our study context (Costedoat et al., 2015), we calculate that our contract modification

more than quadrupled the cost-effectiveness of PES. Many PES programs worldwide

give participants the latitude to enroll a subset of their land, so the modification we

introduce has wide applicability.

Importantly, the improvement in PES performance did not require a sophisticated

market mechanism to elicit the landowner’s private information about their opportunity

costs and planned land decisions (Kang et al., 2019; Layton and Siikamäki, 2009) or a

prediction model to identify where additionality and ecological benefits would likely be

high (Mayfield et al., 2020; Havinga et al., 2020; Aspelund and Russo, 2023), as have been

suggested to improve spatial targeting. Our improvement came from amending a clause

in the contract and essentially closing a loophole that allowed landholders to continue

business-as-usual deforestation but receive PES payments.

Moreover, we document a high rate of landowner satisfaction with the program:

100% of endline respondents in the full enrollment arm and 90% in the standard PES arm
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expressed satisfaction and interest in participating in a program like ours again. If we

assume those who did not complete the endline survey were unsatisfied, the satisfaction

rates were 84% for full-enrollment and 82% for standard PES — still quite high and,

notably, as high among those offered the full-enrollment contract.

Yet our results also highlight the potential trade-offs when tweaking policy design.

Adding a more stringent land enrollment requirement generated more additional forest

cover among those who complied but also reduced the compliance rate. Theoretically,

the net effect of our design change on total averted deforestation could have been positive

or negative, depending on the magnitude of each effect. We attribute the observed net

positive effect to how the design change interacted with contextual and implementation

factors (Börner et al., 2017), namely i) large land endowments, leading to widespread

‘partial enrollment’ among participants; ii) high deforestation rates driven by cattle ex-

pansion in the region, which created significant scope for reducing land conversion; iii) a

high degree of trust and local legitimacy towards our procedures, as reflected by partici-

pant satisfaction; and iv) our ability to monitor and sanction non-compliance effectively.

We note, however, that some of our study innovations relative to Conafor’s PSA, such

as mapping of total landholdings and more stringent enforcement, would be challenging

to achieve at a large scale from technical and political standpoints. In addition, our

contract duration was only one year, and with a longer contract period, landowners may

be less willing to comply with the more demanding full-enrollment contract. One needs

to be cautious in extrapolating our results to a more typical five-year contract duration.

Two additional study limitations are that the results are based on a small sample, and we

focused on effects on deforestation; our study does not analyze socio-economic effects.

Thus, we view our results as demonstrating the possibility of very large gains from using

a full-enrollment contract design, with more evidence needed to understand the gains

that would be achieved at larger scale and over a longer duration.
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one tree from each seed? Environmental effectiveness and poverty alleviation in Mex-
ico’s payments for ecosystem services program.” American Economic Journal: Economic
Policy, 7(4): 1–40.

Aspelund, Karl M., and Anna Russo. 2023. “Additionality and Asymmetric Informa-
tion in Environmental Markets: Evidence from Conservation Auctions.” MIT working
paper.

Börner, Jan, Kathy Baylis, Esteve Corbera, Driss Ezzine-de Blas, Jordi Honey-Rosés,
U Martin Persson, and Sven Wunder. 2017. “The effectiveness of payments for envi-
ronmental services.” World Development, 96: 359–374.

Carabias, Julia, Javier De la Maza, and Rosaura Cadena. 2015. Conservación y Desarrollo
Sustentable en la Selva Lacandona: 25 años de actividades y experiencias. DF, México:Natura
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A Appendix

Table A.1: Robustness: Controlling for past deforestation

Deforestation May 2021 - August 2022

Property area Conafor area Non-Conafor
area

(1) (2) (3)

Treat -0.049 -0.010 -0.107
(0.019)∗∗ (0.008) (0.037)∗∗∗

Control mean 0.142 0.019 0.288
N 779451 382350 397101

Notes: This table repeats the main specification, reported in Table 2, but adding a control variable for past
deforestation. Each observation is a 4.77 m by 4.77 m pixel within the landholding of a study participant,
that was forest-covered at baseline. All regressions include ejido fixed effects. Robust standard errors are
in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Figure A.1: Treatment effect and trends in deforestation rates
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Notes: Percentage deforestation (y-axis) by year (x-axis) for treatment (dark line) and control (gray dashed
line) groups. The helix represents the 95% confidence interval for the difference between the two groups.
Note that the imagery is available as a semester cloudless composite before 2020, instead of monthly, so
the image is cleaner and the predictions have less noise, making the errors smaller.
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Remote sensing measure of deforestation

We trained a random forest algorithm to automatically classify each pixel in satellite
imagery of our study area as forest or not. We used the algorithm, applied to imagery
from the end of the PES contract period, to determine if individuals complied with the
contract. We also use the model output to construct the study’s main outcome variable:
deforestation. We use the sample of pixels with forest at baseline, according to the
model, and the outcome variable is an indicator that equals 1 if the pixel was no longer
forest cover at endline, according to the model.

We use satellite imagery from Planet-NICFI (Norway’s International Climate and
Forest Initiative). These images provide a monthly cloud-free image with a resolution
of pixels 4.59m x 4.56m (the date(s) within the month for the specific images is not
provided). We then created the smallest rectangle that contains all the polygons of
individuals participating in the study. We divided the rectangle into regions of 100 x 100
pixels. Each region is divided randomly into training (56.25%), validation (18.75%) and
testing data (25%). Where the yellow, pink and purple squares in Figure A.2 represent
the training, validation and testing data, respectively.

For the training data, we use hand-classified data from baseline that labeled whether
each pixel in study participants’ land was forest or not. Specifically, we use the polygons
collected in the baseline survey, extract the imagery, and visually inspect each pixel,
classifying it as forest or no forest. This manual labeling is what we used to determine
the forest land to enroll in the PES contracts for both treatment and control groups.

Figure A.2

(a) (b)

Notes: The study area on the left is divided into 4.59km x 4.56km regions. Then each region is
randomly divided into yellow, pink and purple squares representing the training, validation and
testing data respectively, as shown on the right.
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For each pixel, there are four variables that are used as predictors: the red band,
the green band, the blue band and the infrared band. We tried several models and
parameters and the best-performing was a random forest using 100 trees, a maximum
depth of each tree of 50 (i.e., maximum 50 binary splits of the data in each decision tree),
and two variables at each node (mtry parameter). The receiver operating characteristic
(ROC) curve of the model with the performance of the model is shown in Figure A.3.

Figure A.3

Notes: The receiver operating characteristic (ROC) curve of the model plots the true positive rate
(TPR) against the false positive rate for different cutoffs. The TPR is the proportion of forest pixels
accurately classified as forest. The FPR is the fraction of no forest pixels incorrectly classified as
forest. As we lower the cutoff we increase the TPR and the FPR.

Figure A.4 presents two examples of the satellite imagery and the predictions of the
model.

In the regression analysis, we define a pixel as deforested if the model predicts it
to be deforested in that month and the subsequent month (to reduce the rate of false
positives).
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Figure A.4

(a) (b)

(c) (d)

Notes: Panels (a) and (c) show raw satellite imagery of examples of land owned by study partic-
ipants. Panels (b) and (d) show the corresponding remote sensing model output classifying the
pixel’s likelihood of being forest, on a scale from 0 to 1. Figure A.2a shows the location of these
areas in the map.
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