# Why Do Mothers Breastfeed Girls Less Than Boys? Evidence and Implications for Child Health in India

Seema Jayachandran (Stanford) Ilyana Kuziemko (Princeton)

# Why is there a gender gap in breastfeeding?

- Girls are breastfed for a shorter period than boys in India. Why?
- Parents might value the benefit of breastfeeding more for sons than daughters
  - Confers health benefits, bond with child
  - Analogous to girls getting vaccinated less
- Boys might be physically easier to nurse or harder to wean
- This paper offers a different explanation

# **Our hypothesis**

- Gender gap in breastfeeding is an unintended consequence of mother wanting a future son
- Occurs through two reinforcing channels
- Breastfeeding makes the mother temporarily infertile
- After the birth of a daughter, a mother is more likely to want to conceive again to try for a boy
- Therefore, she will wean the daughter sooner so that she can conceive again

# **Our hypothesis – second channel**

- Breastfeeding doesn't make a mother completely infertile
- If mother becomes pregnant while still breastfeeding, she typically stops breastfeeding
- $\bullet$  Want another child  $\to$  Don't use modern contraception  $\to$  Get pregnant  $\to$  Wean older child
- Not driven by contraceptive property of breastfeeding
- Generates same predictions: Future fertility and breastfeeding are negatively correlated

# **Testable predictions**

- When parents want more children, they will breastfeed the current child less
- Shorter duration of breastfeeding for
  - Daughters
  - Children with fewer older brothers
  - Low birth-order children
- Interactions of child's gender, birth order, and mother's ideal family size have specific non-linear effects on breastfeeding
- We test and find support for all of these predictions using household survey data from India

# **Implications of our findings**

- Given health benefits of breastfeeding, our results have implications for child health
- Early weaning of daughters is part of the "missing girls" problem
  - Our estimates suggest that breastfeeding gap accounts for about 15,000 missing girls each year
- Child health will be worse if parents want further children

 $\Rightarrow$  Breastfeeding-fertility connection suggests a new "quality-quantity" tradeoff

# Outline

- Background on breastfeeding, fertility, and child health
- Model
- Data and empirical strategy
- Empirical results on breastfeeding
  - Birth order
  - Gender
  - Birth order and gender interactions
- Child mortality
- Availability of contraception
- Conclusion

# How breastfeeding affects fecundity

- Breastfeeding leads to amenorrhea
- Hormones that regulate menses are disrupted
- Breastfeeding often lowers mother's nutritional status, causing amenorrhea
- 34% of women in our sample cite breastfeeding as the reason for not using artificial contraception

# How pregnancy affects breastfeeding

- Breastfeeding does not make a woman completely infertile
- Many mothers quit breastfeeding if they become pregnant or after next childbirth
- 32% of women in our sample cite pregnancy as the reason they stopped breastfeeding

# **Breastfeeding and health**

- Breastfeeding protects child from contaminated water and food
- Medical literature finds link between breastfeeding and infant/child mortality, mainly from diarrheal disease
  - True even for toddlers, past age of exclusive breastfeeding
- Hypothesized long-term effects of breastfeeding (obesity, asthma, IQ), but not focus of this paper

# Model

- Model mother's choice of whether to breastfeed
  - Essentially a model of the fertility decision
- Mother gives birth to one child or no children in each of infinite periods
- Mother who just had a child decides whether to breastfeed or not
- Breastfeeding inhibits fecundity: Mother has another child in the next period iff she doesn't breastfeed

# Utility from quantity of children and from sons



 $u(n,s) = q(n) + \lambda g(s)$ 

# **Utility function**

• Utility depends on quantity of children and quantity of sons

$$u(n,s) = \phi f(n) - c(n) + \lambda g(s) \equiv q(n) + \lambda g(s)$$

- Demand for quantity
  - Want to have some children,  $q'(\cdot) > 0$  for small n
  - Convex costs and diminishing benefits of quantity so  $q^\prime < 0$  for large n
  - Demand for quantity is increasing in parameter  $\phi$

# **Utility function**

$$u(n,s) = \phi f(n) - c(n) + \lambda g(s) \equiv q(n) + \lambda g(s)$$

- Demand for sons
  - Son preference is increasing in  $\lambda$
  - Utility is increasing in number of sons with diminishing returns

g' > 0 and g'' < 0

## **Breastfeeding decision**

- Breastfeeding inhibits fertility
- If  $b_t = 1$ , then  $n_{t+1} = n_t$  and  $s_{t+1} = s_t$
- If  $b_t = 0$ , then  $n_{t+1} = n_t + 1$ , and  $s_{t+1} = s_t + 1$  or  $s_{t+1} = s_t$ , each with probability 1/2
- Decision problem

$$V(n,s) = \max\{V^{b=1}, V^{b=0}\} = \max\left\{\frac{u(n,s)}{1-\beta}, u(n,s) + \beta\left(\frac{V(n+1,s) + V(n+1,s+1)}{2}\right)\right\}$$

# Model's assumptions

- Breastfeeding determines fertility perfectly
- Do not model reverse channel of subsequent conception reducing breastfeeding (would reinforce our predictions)
- Breastfeeding decision is binary
  - Can be thought of as short versus long duration of breastfeeding
  - A mother who wants more children might space her births
  - But a mother who wants to stop having kids breastfeeds more
- Breastfeeding has no ancillary costs or benefits

# Predictions

**Proposition 1.** Breastfeeding is increasing in birth order.

#### **Proposition 2.**

1. A boy is more likely to be breastfed than a girl.

2. A child is more likely to be breastfed if a larger number of his or her older siblings are male, all else equal.

# **Predictions (continued)**

**Proposition 3.** The largest gap in breastfeeding of boys versus girls is at intermediate birth order.

- At low birth order, mother will have more kids regardless of sex composition
- At high birth order, she will stop regardless

## Predictions related to "ideal family size"

- $\bullet$  Net benefits of quantity q(n) are positive up to some value of n and then declining
- Define  $\hat{n}$  as quantity up to which sex composition is irrelevant to breastfeeding/stopping decision, for any son preference
- Mothers who vary in  $\phi$  will vary in  $\hat{n}$ , or "ideal family size"

## Predictions related to "ideal family size"

#### **Proposition 4.**

- 1. Breastfeeding increases in birth order only once the mother's ideal family size has been reached.
- 2. The gender gap in breastfeeding only arises when the ideal family size has been reached.

# Data

- Pool 3 waves of the India National Family Health Survey (NFHS)
  - Sample of ever-married women age 15 to 49
  - 1992-3, 1998-9, 2005-6
  - Based on Demographic and Health Survey
- Fertility history, breastfeeding, mortality, contraception
- Data on months of breastfeeding for children up to age 3, 4, or 5 (varying by survey wave)
  - Topcode breastfeeding at 36 months

# **Sample restrictions**

- Breastfeeding variable is missing
- Child has died (breastfeeding is censored)
- Multiple births
- Mothers with 8 or more children

 $\Rightarrow$  About 110,000 observations (children)

# Why no mother fixed effect models

- Many mothers have only one child in the 3, 4, or 5 year window
- Having >1 child in sample is more likely if first child was breastfed for a short duration
  - Problem is due precisely to breastfeeding lowering fecundity
  - Mechanical correlation of breastfeeding and birth order
- Composition bias is biggest concern for birth order results
- Even with mother FEs, birth order results alone would not provide strong test of model
  - Mother FEs could not address learning-by-doing story

# **Descriptive statistics**

|                             | Birth order $\leq$ 2 | Birth order $> 2$ | Sons    | Daughters |
|-----------------------------|----------------------|-------------------|---------|-----------|
| Months of breastfeeding     | 14.24                | 15.54             | 14.99   | 14.56     |
|                             | [8.739]              | [9.287]           | [9.093] | [8.880]   |
| Birth order                 | 1.469                | 4.109             | 2.579   | 2.550     |
|                             | [0.499]              | [1.220]           | [1.571] | [1.563]   |
| Ideal no. of children       | 2.404                | 3.164             | 2.687   | 2.739     |
|                             | [0.861]              | [1.195]           | [1.067] | [1.085]   |
| Male                        | 0.513                | 0.522             | 1       | 0         |
|                             | [0.500]              | [0.500]           | [0]     | [0]       |
| Age of child                | 1.950                | 1.920             | 1.939   | 1.936     |
|                             | [1.262]              | [1.252]           | [1.255] | [1.261]   |
| Age of mother               | 23.72                | 28.64             | 25.81   | 25.71     |
|                             | [4.228]              | [4.816]           | [5.097] | [5.096]   |
| Rural                       | 0.637                | 0.743             | 0.677   | 0.684     |
|                             | [0.481]              | [0.437]           | [0.467] | [0.465]   |
| Mother's years of schooling | 5.597                | 2.429             | 4.333   | 4.227     |
|                             | [5.144]              | [3.767]           | [4.904] | [4.852]   |
| Observations                | 64,439               | 45,744            | 56,896  | 53,287    |

## **Estimating equation – effects by birth order**

• Estimate breastfeeding duration for each value of birth order:

$$BF_{ij} = \sum_{k} \beta_k \cdot \mathbb{1}(BirthOrder_{ij} = k) + \delta X_{ij} + a_i + \epsilon_{ij}$$

- i is child and j is mother
- Expect  $\beta_k$  to be increasing in k
- Control for child's birth year (quadratic), mother's age (quadratic) and education, state FEs, rural dummy, survey wave FEs
- $a_i$  are age-in-months fixed effects, up to 36 months, due to censoring of breastfeeding duration
- Also estimate hazard regression

#### **Breastfeeding versus birth order**



# Breastfeeding and birth order

|                             | 0        | Hazard    |            |
|-----------------------------|----------|-----------|------------|
|                             | (1)      | (2)       | (3)        |
| Birth order                 | 0.464*** | 0.210***  | -0.0612*** |
|                             | [0.0124] | [0.0179]  | [0.00421]  |
| Male                        |          | 0.391***  | -0.105***  |
|                             |          | [0.0373]  | [0.00866]  |
| Mother's years of schooling |          | -0.121*** | 0.0289***  |
|                             |          | [0.00503] | [0.00112]  |
| Rural                       |          | 0.806***  | -0.181***  |
|                             |          | [0.0478]  | [0.0102]   |
| Covariates                  | No       | Yes       | Yes        |
| Observations                | 110183   | 110183    | 108616     |
| R-squared                   | 0.503    | 0.527     |            |

# Birth order relative to ideal number of children

- Can also examine birth order relative to the mother's ideal number of children
- Define  $\Delta Ideal_{ij} = BirthOrder_i Ideal_j$  and estimate

$$BF_{ij} = \sum_{k} \beta_k \cdot \mathbb{1}(\Delta Ideal_{ij} = k) + \delta X_{ij} + \epsilon_{ij}$$

- Prediction is that breastfeeding should increase once you reach your ideal family size, or once  $\Delta Ideal=0$
- Caveat: Ideal family size is ill-defined concept + mothers might rationalize actual fertility

#### Birth order - "ideal number of children"



# Breastfeeding and ideal family size

|                                              | (4)      | (5)       | (6)      | (7)       |
|----------------------------------------------|----------|-----------|----------|-----------|
| $\Delta I deal \ge 0$                        | 1.072*** | 0.876***  | 0.773*** | 0.399***  |
|                                              | [0.0399] | [0.0454]  | [0.0745] | [0.0742]  |
| $\Delta I deal$                              |          |           | -0.0242  | 0.320***  |
|                                              |          |           | [0.0426] | [0.0436]  |
| $\Delta I deal \times (\Delta I deal \ge 0)$ |          |           | 0.441*** | -0.215*** |
|                                              |          |           | [0.0502] | [0.0515]  |
| Male                                         |          | -0.105*** |          | 0.374***  |
|                                              |          | [0.00866] |          | [0.0385]  |
| Mother's years of schooling                  |          | 0.0289*** |          | -0.135*** |
|                                              |          | [0.00112] |          | [0.00489] |
| Rural                                        |          | -0.181*** |          | 0.839***  |
|                                              |          | [0.0102]  |          | [0.0490]  |
| Covariates                                   | No       | Yes       | No       | Yes       |
| Observations                                 | 104456   | 104456    | 104456   | 104456    |
| R-squared                                    | 0.496    | 0.524     | 0.497    | 0.524     |

# Predictions related to breastfeeding and gender

- Boys breastfed more than girls
- Children with more older brothers breastfed more
- Gender gap peaks at medium birth order
- Gender gap opens up once ideal family size is reached

### Breastfeeding "survival" curve



# **Breastfeeding and gender**

|                                 | OLS      |          | Hazard    | OLS                  |                      |                     |
|---------------------------------|----------|----------|-----------|----------------------|----------------------|---------------------|
|                                 | (1)      | (2)      | (3)       | (4)                  | (5)                  | (6)                 |
| Male                            | 0.368*** | 0.389*** | -0.103*** | 0.244***             | 0.262***             | 0.458***            |
|                                 | [0.0384] | [0.0373] | [0.00867] | [0.0486]             | [0.0546]             | [0.0675]            |
| Mother has at least one son     |          |          |           | 0.280***<br>[0.0623] |                      |                     |
| Male share of mother's children |          |          |           |                      | 0.231***<br>[0.0751] |                     |
| Male x First survey wave        |          |          |           |                      |                      | -0.144<br>[0.0895]  |
| Male x Second survey wave       |          |          |           |                      |                      | -0.0654<br>[0.0929] |
| Covariates                      | No       | Yes      | Yes       | Yes                  | Yes                  | Yes                 |
| Observations                    | 110183   | 110183   | 108616    | 110183               | 110183               | 110183              |
| R-squared                       | 0.497    | 0.527    |           | 0.527                | 0.527                | 0.527               |

# **Observed versus completed breastfeeding**

- Survival curves indicate that boys and girls *eventually* have a 0.9 month average gap in breastfeeding duration
  - Equivalent to about 4% of girls weaned at 12 months, whereas had they been boys, they would have been breastfed until 36 months
- OLS regressions show smaller gap because some children are 3 months old (no gap), others are 24 months old (some of gap has opened up), etc.
- OLS useful for testing comparative statics
- But when thinking about welfare implications, total gap of 0.9 months is what's relevant

#### Gender differences in breastfeeding by birth order



#### Gender differences by $\Delta$ Ideal



## **Gender-birth order interactions**

|                                                          | OLS        |            | Hazard     | OLS      |          |
|----------------------------------------------------------|------------|------------|------------|----------|----------|
|                                                          | (1)        | (2)        | (3)        | (4)      | (5)      |
| Male                                                     | -0.0839    | -0.0661    | 0.0203     | -0.00614 | -0.0188  |
|                                                          | [0.135]    | [0.131]    | [0.0301]   | [0.134]  | [0.130]  |
| Male $\times$ Birth order                                | 0.299***   | 0.311***   | -0.0847*** |          |          |
|                                                          | [0.0944]   | [0.0923]   | [0.0216]   |          |          |
| Male x Birth order <sup>2</sup>                          | -0.0365*** | -0.0381*** | 0.00997*** |          |          |
|                                                          | [0.0135]   | [0.0132]   | [0.00316]  |          |          |
| $Male \times (\Delta I deal \geq 0)$                     |            |            |            | 0.548*** | 0.590*** |
|                                                          |            |            |            | [0.150]  | [0.146]  |
| $Male \times \Delta I deal$                              |            |            |            | -0.0827  | -0.102   |
|                                                          |            |            |            | [0.0846] | [0.0820] |
| $Male \times \Delta I deal \times (\Delta I deal \ge 0)$ |            |            |            | 0.0665   | 0.113    |
| · — /                                                    |            |            |            | [0.0991] | [0.0962] |
| Covariates                                               | No         | Yes        | Yes        | No       | Yes      |
| Max effect of male                                       |            |            |            |          |          |
| at birth order                                           | 4.09       | 4.09       | 4.25       | N/A      | N/A      |

# Summary of results so far

- A child is weaned sooner when a mother wants additional children
  - Low birth order
  - Few sons
- Sex composition matters most for breastfeeding duration at medium birth order
- Breastfeeding depends on birth order *relative to ideal family size* 
  - Breastfeeding duration jumps higher when ideal family size reached
  - Gender gap in breastfeeding opens up once ideal family size is reached, and then closes again at higher parity

## **Preview of next few slides**

- Decompose the gender gap in breastfeeding into the fertilitystopping channel versus other channels
- Test whether effects vary based on measures of son preference
- Run specification test using other health input (vaccinations) as the outcome
- Then turn to implications for child mortality

# How much of gender gap is breastfeeding is due to fertility channel?

- Decompose son advantage in breastfeeding two ways
- Find that 2/3 of gap is due to fertility stopping preferences
- Based on two calculations
  - Assume son advantage conditional on no. of children and no. of sons is due to other channels (e.g., value sons' health)
  - Assume fertility-stopping channel turns on only after the mother's ideal family size is reached

## Heterogeneity in son preference

- We test whether gender gap in breastfeeding varies with heterogeneity in son preference
- Gender gap is larger in regions with stronger son preference (measured as sex ratio at birth)
- Gender gap varies with mother's self-reported ideal number of sons
  - Breastfeeding increases when the mother reaches her ideal number of sons

# Heterogeneity in son preference

|                                               | Regional variation in son pref. |                                | Individual v                     | var. in son pref.   |
|-----------------------------------------------|---------------------------------|--------------------------------|----------------------------------|---------------------|
|                                               | (1)                             | (2)                            | (3)                              | (4)                 |
| Male                                          | -1.922**<br>[0.842]             | 1.750<br>[1.892]               | 0.260 <sup>***</sup><br>[0.0456] | 0.366*<br>[0.202]   |
| Male x State sex ratio                        | 2.145 <sup>***</sup><br>[0.781] | -1.648<br>[1.760]              |                                  |                     |
| Male x ( $\Delta I deal \geq 0$ ) x Sex ratio |                                 | 6.218 <sup>**</sup><br>[2.529] |                                  |                     |
| $\Delta IdealSons \geq 0$                     |                                 |                                | 0.408 <sup>***</sup><br>[0.0890] |                     |
| $\Delta I deal \geq 0$                        |                                 |                                | 0.328 <sup>***</sup><br>[0.0779] |                     |
| $Male \times (\Delta IdealSons = 0)$          |                                 |                                |                                  | 0.205**<br>[0.0956] |
| $Male \times (\Delta IdealSons > 0)$          |                                 |                                |                                  | -0.0603<br>[0.129]  |

# Patterns not found for vaccinations

|                                 | Dep. var.: Total number of vaccinations |          |             |             |                 |  |  |
|---------------------------------|-----------------------------------------|----------|-------------|-------------|-----------------|--|--|
|                                 | (1)                                     | (2)      | (3)         | (4)         | (5)             |  |  |
| Male                            | 0.127***                                | 0.131*** | 0.143***    | 0.0123      | 0.0631          |  |  |
|                                 | [0.0115]                                | [0.0117] | [0.0157]    | [0.0391]    | [0.0412]        |  |  |
| Birth order                     | -0.146***                               |          |             |             |                 |  |  |
|                                 | [0.00600]                               |          |             |             |                 |  |  |
| $\Delta I deal \geq 0$          |                                         | -0.0235  |             |             |                 |  |  |
|                                 |                                         | [0.0178] |             |             |                 |  |  |
| Mother has at least one son     |                                         |          | -0.0323     |             |                 |  |  |
|                                 |                                         |          | [0.0202]    |             |                 |  |  |
| Male $\times$ Birth order       |                                         |          |             | 0.0549*     |                 |  |  |
|                                 |                                         |          |             | [0.0291]    |                 |  |  |
| Male x Birth order <sup>2</sup> |                                         |          |             | -0.00291    |                 |  |  |
|                                 |                                         |          |             | [0.00432]   |                 |  |  |
| Male x ( $\Delta I deal > 0$ )  |                                         |          |             |             | 0.0305          |  |  |
|                                 |                                         |          |             |             | [0.0455]        |  |  |
| Additional fixed effects        | None                                    | None     | Birth order | Birth order | $\Delta I deal$ |  |  |

# **Other robustness checks**

- Robust to including children who have died (hazard models)
- Patterns found in each survey wave
  - Suggests not an artifact of sex-selective abortion
- Find similar patterns for whether mother has a subsequent child and for birth spacing
  - Here, we can use mother fixed effects, and results similar with mother FEs

# Health effects of breastfeeding

- Breastfeeding hypothesized to lower the risk of infant and child mortality
- Mainly because of crowding out contaminated water and food
- Relevant risk is how breastfeeding affects death past infancy
  - Gender gap in breastfeeding opens up at age 1
  - Literature finds that mortality risk is 2 to 3 times as high for 12 month-old to 36-month age range if not breastfeeding
  - Caveat that these correlations might not be isolating causal effects

# Breastfeeding and child mortality in India

- Breastfeeding patterns we find line up with 2 facts about excess female mortality in India
  - Excess female mortality mainly seen after age 1 rather than for infants
  - Excess female mortality is not as pronounced for first births
- Of course, breastfeeding is not only explanation for these patterns
- In India as elsewhere, child mortality increases with birth order
  - Opposite direction of our hypothesis
  - Consistent with parents allocating more resources to lower birth-order children

# **Empirical strategy**

- Examine mortality between age 12 and 36 months as outcome
- Estimate same specifications as used for breastfeeding; expect opposite-signed coefficients
- Use mortality between age 1 and 6 months as placebo test
- Compare HHs with and without piped water
  - Helps separate hypothesis from other explanations such girls being born into larger families

# Results on mortality, age 1 to 3 years

|                                     | Household lacks piped water |             |           | Household has piped water |            |           |
|-------------------------------------|-----------------------------|-------------|-----------|---------------------------|------------|-----------|
|                                     | (1)                         | (2)         | (3)       | (4)                       | (5)        | (6)       |
| Male                                | -0.00851***                 | 0.00369     | -0.00522* | -0.00388***               | 0.000131   | -0.00828* |
|                                     | [0.000866]                  | [0.00291]   | [0.00285] | [0.00103]                 | [0.00376]  | [0.00437] |
| Male $\times$ Birth order           |                             | -0.00619*** |           |                           | -0.00272   |           |
|                                     |                             | [0.00220]   |           |                           | [0.00316]  |           |
| Male x Birth order <sup>2</sup>     |                             | 0.000476    |           |                           | 0.000313   |           |
|                                     |                             | [0.000331]  |           |                           | [0.000529] |           |
| $Male \times (\Delta I deal \ge 0)$ |                             |             | -0.00485  |                           |            | 0.00581   |
|                                     |                             |             | [0.00324] |                           |            | [0.00462] |
| Observations                        | 125857                      | 125857      | 116957    | 35164                     | 35164      | 33850     |
| Unpiped - Piped                     | -0.00465                    | -0.00350    | -0.0106   |                           |            |           |
| coeff(s) of interest                |                             | 0.000168    |           |                           |            |           |
| p-value                             | 0.000560                    | 0.0497      | 0.0600    |                           |            |           |

# Placebo test – 1-to-6-month mortality

|                                       | Household lacks piped water |            |           | Household has piped water |            |           |
|---------------------------------------|-----------------------------|------------|-----------|---------------------------|------------|-----------|
|                                       | (1)                         | (2)        | (3)       | (4)                       | (5)        | (6)       |
| Male                                  | -0.00115                    | 0.00642**  | -0.00392  | 0.00142                   | 0.00229    | -0.00786* |
|                                       | [0.000742]                  | [0.00263]  | [0.00253] | [0.00101]                 | [0.00366]  | [0.00415] |
| Male x Birth order                    |                             | -0.00415** |           |                           | -0.000335  |           |
|                                       |                             | [0.00185]  |           |                           | [0.00296]  |           |
| Male x Birth order <sup>2</sup>       |                             | 0.000367   |           |                           | -0.0000180 |           |
|                                       |                             | [0.000268] |           |                           | [0.000481] |           |
| $Male \times (\Delta I deal \geq 0)$  |                             |            | 0.000997  |                           |            | 0.00835*  |
| · · · · · · · · · · · · · · · · · · · |                             |            | [0.00286] |                           |            | [0.00441] |
| Observations                          | 122942                      | 122942     | 114997    | 34142                     | 34142      | 33011     |
| Unpiped-Piped                         | -0.00257                    | -0.00381   | -0.00735  |                           |            |           |
| coeff(s) of interest                  |                             | 0.000386   |           |                           |            |           |
| p-value                               | 0.0403                      | 0.259      | 0.162     |                           |            |           |

# "Missing girls"

- Use mortality estimates from the literature
  - Mortality is 150% higher when not breastfeeding
  - Combine with our coefficient for gender gap in breastfeeding
  - 8,400 missing girls each year
- Use our mortality estimate
  - Triple diff estimate of Male \* Unpiped for 12-to-36 month mortality minus 1-to-6 month placebo ages as effect of breastfeeding on mortality
  - 21,500 missing girls each year
- Midpoint of 15,000 missing girls a year  $\Rightarrow$  15% of the gender gap in mortality for this age 1 to 3 range
- 9% of gender gap in child mortality (ages 1 to 5)

### Access to modern contraception

- Access to modern contraception has theoretically ambiguous effect on breastfeeding
- Could cause mothers to substitute away from breastfeeding to more effective forms of birth control
- Could increase breastfeeding because fewer unwanted pregnancies that cause the mother to wean the first child
- Our suggestive evidence
  - Condoms, IUDs and other reversible methods act as substitute for breastfeeding
  - Sterilization seems to increase breastfeeding

# **Potential policy implications**

- More evidence needed, but reversible birth control seems to crowd out breastfeeding
- May need to pair contraception campaigns with campaigns to promote breastfeeding
- Clean water and modern contraception could be complementary policies

# Conclusion

- How long a mother breastfeeds depends on her future fertility
- Several specific predictions are born out in data for India
- New type of quantity-quality trade-off
  - As total fertility falls, average breastfeeding should increase
- Breastfeeding protects against mortality, so could partly explain "missing girls"
  - Underlying cause is son preference
  - But due to demand for sons rather than choice to allocate fewer resources to daughters